Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
Braz J Microbiol ; 55(1): 639-646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214875

RESUMO

Iron (Fe) is the fourth most abundant element on the planet, and iron-oxidising bacteria (FeOB) play an important role in the biogeochemical cycle of this metal in nature. FeOB stands out as Fe oxidisers in microaerophilic environments, and new members of this group have been increasingly discussed in the literature, even though their isolation can still be challenging. Among these bacteria is the Gallionellaceae family, mainly composed of neutrophilic FeOB, highlighting Gallionella ferruginea, and nitrite-oxidiser genera. In the previous metagenomic study of the biofilm and sediments of the cooling system from the Irapé hydroelectric power plant (HPP-Irapé), 5% of the total bacteria sequences were related to Gallionellaceae, being 99% unclassified at genus level. Thus, in the present study, a phylogenetic tree based on this family was constructed, in order to search for shared and unique Gallionellaceae signatures in a deep phylogenetic level affiliation and correlated them with geomorphologic characteristics. The results revealed that Gallionella and Ferrigenium were ubiquitous reflecting their ability to adapt to various locations in the power plant. The cave was considered a hotspot for neutrophilic FeOB since it harboured most of the Gallionellaceae diversity. Microscopic biosignatures were detected only in the CS1 sample, which presented abundance of the stalk-forming Ferriphaselus and of the sheath-forming Crenothrix. Further studies are required to provide more detailed insights on Gallionellaceae distribution and diversity patterns in hydroelectric power plants, particularly its biotechnological potential in this industry.


Assuntos
Gallionellaceae , Gallionellaceae/genética , Filogenia , Ferro , Metais , Metagenômica , Oxirredução
3.
Reprod Toxicol ; 124: 108527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160782

RESUMO

Naproxen reduces the production of prostaglandins via inhibition of the cyclooxygenase. Studies have shown that its administration in women can be related to failed ovulation. Therefore, preclinical investigations must be performed in order to investigate its effects in experimental models. Thus, the aim of this study was to evaluate the effects of naproxen on murine folliculogenesis, ovulation, and female fertility. Female C57BL/6 mice (n = 128 - 6 weeks old) were divided into Control, low (10 mg/kg), and high naproxen (50 mg/kg) groups, who were treated for 8 days and directed to morphofunctional analyses. Follicular quantification showed a reduced percentage of antral follicles in naproxen-treated animals. These treated animals also showed smaller oocytes included in secondary and antral follicles, and the diameter of secondary and antral follicles was also reduced. A reduction in the percentage of Ki67-positive granulosa cells was observed in treated animals that also showed down-regulation of Igf1r compared to control. After an ovarian stimulation protocol, naproxen-treated animals showed a reduction in the percentage of secondary and antral follicles, a reduced number of ovulated oocytes and, corpora lutea, and an increased number of failed ovulations. Finally, naproxen-treated animals also showed a reduction in mating index and pregnancy rate. Our findings suggested that, in mice, naproxen administration (eight days treatment) negatively affects molecular and morphological aspects related to late folliculogenesis, ovulation, and fertility.


Assuntos
Naproxeno , Ovulação , Humanos , Feminino , Camundongos , Animais , Naproxeno/toxicidade , Camundongos Endogâmicos C57BL , Oócitos , Proliferação de Células
4.
Animals (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893982

RESUMO

Limnoperna fortunei, the golden mussel, is a bivalve mollusk considered an invader in South America. This species is responsible for ecological and economic damages due to its voluminous fouling capability. Chemical biocides such as MXD-100™ and sodium dichloroisocyanurate (NaDCC) are often used to control L. fortunei infestations in hydraulic systems. Thus, we proposed to investigate the effects of different periods (24, 48 and 72 h) of exposure to MXD-100™ (0.56 mg L-1) and NaDCC (1.5 mg L-1) on the gills of L. fortunei through morphological and molecular analyses. NaDCC promoted progressive morphological changes during the analyzed periods and only an upregulation of SOD and HSP70 expression during the first 24 h of exposure. MXD-100™ led to severe morphological changes from the first period of exposure, in addition to an upregulation of SOD, CAT, HSP70 and CYP expression during the first 24 h. In contrast, MXD-100™ led to a downregulation of CAT transcription between 24 and 48 h. In static conditions, NaDCC causes lethal damage after 72 h of exposure, and that exposure needs to be continuous to achieve the control of the species. Meanwhile, the MXD-100™ treatment presented several effects during the first 24 h, showing acute toxicity in a shorter period of time.

5.
Front Bioeng Biotechnol ; 11: 1116917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911186

RESUMO

Electrospinning emerged as a promising technique to produce scaffolds for cultivated meat in function of its simplicity, versatility, cost-effectiveness, and scalability. Cellulose acetate (CA) is a biocompatible and low-cost material that support cell adhesion and proliferation. Here we investigated CA nanofibers, associated or not with a bioactive annatto extract (CA@A), a food-dye, as potential scaffolds for cultivated meat and muscle tissue engineering. The obtained CA nanofibers were evaluated concerning its physicochemical, morphological, mechanical and biological traits. UV-vis spectroscopy and contact angle measurements confirmed the annatto extract incorporation into the CA nanofibers and the surface wettability of both scaffolds, respectively. SEM images revealed that the scaffolds are porous, containing fibers with no specific alignment. Compared with the pure CA nanofibers, CA@A nanofibers showed increased fiber diameter (420 ± 212 nm vs. 284 ± 130 nm). Mechanical properties revealed that the annatto extract induces a reduction of the stiffness of the scaffold. Molecular analyses revealed that while CA scaffold favored C2C12 myoblast differentiation, the annatto-loaded CA scaffold favored a proliferative state of these cells. These results suggest that the combination of cellulose acetate fibers loaded with annatto extract may be an interesting economical alternative for support long-term muscle cells culture with potential application as scaffold for cultivated meat and muscle tissue engineering.

6.
Reprod Sci ; 30(8): 2524-2536, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36759496

RESUMO

Ovarian cryopreservation is an alternative for the preservation of fertility, and the subcutaneous transplantation site is considered one of the most promising. Studies evaluating the follicular growth and its relationship with gene expression and vascular perfusion are essential for improving this technique and its clinical application. Thus, the aim of this study was to evaluate the effect of subcutaneous autotransplantation and vitrification on follicular growth and atresia and their relationship with vascular perfusion and gene expression. Therefore, female mice were ovariectomized, and the ovaries were divided in two experimental groups (1) vitrified (treatment, n = 97) and (2) not vitrified (control, n = 97) and subsequently were transplanted. Then grafts, from both groups, were recovered after 1, 12, or 23 days (D1, D12, D23) and subjected to follicular quantification, morphometry, and qPCR. Non-transplanted ovaries (D0) were also used. The estrous cycle and vascular perfusion were monitored throughout the experiment. On D9, 100% of the animals had reestablished their estrous cycles (p > 0.05). Blood perfusion at the transplant site was similar for both treatments (p > 0.05), with greater perfusion at the site of vitrified transplants only on D1 (p < 0.05). A drastic reduction in the number of antral follicles and an increased number of atretic follicles were observed on D1 (p < 0.0001), associated with upregulation of Casp3, Fshr, and Igf1r; and downregulation of Bax, Acvr1, Egfr, and Lhcgr (p < 0.05). Our findings indicate that the first day after subcutaneous transplantation is a critical period for follicular survival, with intense follicular atresia independent of Bax upregulation.


Assuntos
Atresia Folicular , Ovário , Feminino , Camundongos , Animais , Proteína X Associada a bcl-2 , Folículo Ovariano , Criopreservação/métodos , Vitrificação , Expressão Gênica
7.
Front Nutr ; 10: 1297926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249608

RESUMO

Overcoming the challenge of creating thick, tissue-resembling muscle constructs is paramount in the field of cultivated meat production. This study investigates the remarkable potential of random cellulose acetate nanofibers (CAN) as a transformative scaffold for muscle tissue engineering (MTE), specifically in the context of cultivated meat applications. Through a comparative analysis between random and aligned CAN, utilizing C2C12 and H9c2 myoblasts, we unveil the unparalleled capabilities of random CAN in facilitating muscle differentiation, independent of differentiation media, by exploiting the YAP/TAZ-related mechanotransduction pathway. In addition, we have successfully developed a novel process for stacking cell-loaded CAN sheets, enabling the production of a three-dimensional meat product. C2C12 and H9c2 loaded CAN sheets were stacked (up to four layers) to form a ~300-400 µm thick tissue 2 cm in length, organized in a mesh of uniaxial aligned cells. To further demonstrate the effectiveness of this methodology for cultivated meat purposes, we have generated thick and viable constructs using chicken muscle satellite cells (cSCs) and random CAN. This groundbreaking discovery offers a cost-effective and biomimetic solution for cultivating and differentiating muscle cells, forging a crucial link between tissue engineering and the pursuit of sustainable and affordable cultivated meat production.

8.
BMC Genomics ; 23(1): 188, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255809

RESUMO

BACKGROUND: The repulsive guidance molecule a (RGMa) is a GPI-anchor axon guidance molecule first found to play important roles during neuronal development. RGMa expression patterns and signaling pathways via Neogenin and/or as BMP coreceptors indicated that this axon guidance molecule could also be working in other processes and diseases, including during myogenesis. Previous works from our research group have consistently shown that RGMa is expressed in skeletal muscle cells and that its overexpression induces both nuclei accretion and hypertrophy in muscle cell lineages. However, the cellular components and molecular mechanisms induced by RGMa during the differentiation of skeletal muscle cells are poorly understood. In this work, the global transcription expression profile of RGMa-treated C2C12 myoblasts during the differentiation stage, obtained by RNA-seq, were reported. RESULTS: RGMa treatment could modulate the expression pattern of 2,195 transcripts in C2C12 skeletal muscle, with 943 upregulated and 1,252 downregulated. Among them, RGMa interfered with the expression of several RNA types, including categories related to the regulation of RNA splicing and degradation. The data also suggested that nuclei accretion induced by RGMa could be due to their capacity to induce the expression of transcripts related to 'adherens junsctions' and 'extracellular-cell adhesion', while RGMa effects on muscle hypertrophy might be due to (i) the activation of the mTOR-Akt independent axis and (ii) the regulation of the expression of transcripts related to atrophy. Finally, RGMa induced the expression of transcripts that encode skeletal muscle structural proteins, especially from sarcolemma and also those associated with striated muscle cell differentiation. CONCLUSIONS: These results provide comprehensive knowledge of skeletal muscle transcript changes and pathways in response to RGMa.


Assuntos
Proteínas do Tecido Nervoso , Transcriptoma , Proteínas Ligadas por GPI , Humanos , Hipertrofia , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética
9.
BMC Zool ; 7(1): 6, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37170369

RESUMO

BACKGROUND: Limnoperna fortunei is a freshwater bivalve mollusc originally from southern Asia that invaded South America in the 1990's. Due to its highly efficient water pumping and filtering, and its capacity to form strong adhesions to a variety of substrates by byssus thread, this invasive species has been able to adapt to several environments across South America, causing significant ecological and economic damages. By gaining a deeper understanding of the biological and ecological aspects of L. fortunei we will be able to establish more effective strategies to manage its invasion. The gills of the mollusc are key structures responsible for several biological functions, including respiration and feeding. In this work, we characterized the ultrastructure of L. fortunei gills and its ciliary epithelium using light microscopy, transmission and scanning electron microscopies. This is the first report of the morphology of the epithelial cells and cilia of the gill of L. fortunei visualized in high resolution. RESULTS: The analysis showed highly organized and abundant ciliary structures (lateral cilia, laterofrontal cirri and frontal cilia) on the entire length of the branchial epithelium. Mitochondria, smooth endoplasmic reticulum and glycogen granules were abundantly found in the epithelial cells of the gills, demonstrating the energy-demanding function of these structures. Neutral mucopolysaccharides (low viscosity mucus) were observed on the frontal surface of the gill filaments and acid mucopolysaccharides (high viscosity mucus) were observed to be spread out, mainly on the lateral tract. Spherical vesicles, possibly containing mucus, could also be observed in these cells. These findings demonstrate the importance of the mucociliary processes in particle capture and selection. CONCLUSIONS: Our data suggest that the mechanism used by this mollusc for particle capture and selection could contribute to a better understanding of key aspects of invasion and also in the establishment of more efficient and economically viable strategies of population control.

10.
Front Genet ; 12: 709937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646299

RESUMO

Animals with muscle hypertrophy phenotype are targeted by the broiler industry to increase the meat production and the quality of the final product. Studies characterizing the molecular machinery involved with these processes, such as quantitative trait loci studies, have been carried out identifying several candidate genes related to this trait; however, validation studies of these candidate genes in cell culture is scarce. The aim of this study was to evaluate SAP30 as a candidate gene for muscle development and to validate its function in cell culture in vitro. The SAP30 gene was downregulated in C2C12 muscle cell culture using siRNA technology to evaluate its impact on morphometric traits and gene expression by RNA-seq analysis. Modulation of SAP30 expression increased C2C12 myotube area, indicating a role in muscle hypertrophy. RNA-seq analysis identified several upregulated genes annotated in muscle development in treated cells (SAP30-knockdown), corroborating the role of SAP30 gene in muscle development regulation. Here, we provide experimental evidence of the involvement of SAP30 gene as a regulator of muscle cell hypertrophy.

11.
Biofouling ; 37(2): 246-256, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33730946

RESUMO

Microfouling, ie biofilm formation on surfaces, can have an economic impact and requires costly maintenance in water-powered energy generation systems. In this study, the microbiota of a cooling system (filter and heat exchanger) in the Irapé hydroelectric power plant in Brazil was examined. The goal was to identify bacteria that could be targeted to more efficiently reduce biofilm formation. Two sampling campaigns were made corresponding to two well-defined seasons of the Brazilian Cerrado biome: the dry (campaign 1) and the wet (campaign 2). Microfouling communities varied considerably over time in samples obtained at different times after the last clearance of the heat exchanger. The thermophilic bacteria Meiothermus, Thermomonas and Symbiobacterium were exclusive and abundant in the microfouling of the heat exchanger in campaign 2, while methanotrophs and iron-reducing bacteria were abundant only in filter sediments. These findings could help to guide strategies for ecofriendly measures to reduce biofilm fouling in hydroelectric power plants, minimizing environmental and economic losses.


Assuntos
Bactérias , Água , Archaea , Bactérias/genética , Biofilmes , Brasil
12.
In Vitro Cell Dev Biol Anim ; 57(4): 415-427, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33748906

RESUMO

Although originally discovered inducing important biological functions in the nervous system, repulsive guidance molecule a (RGMa) has now been identified as a player in many other processes and diseases, including in myogenesis. RGMa is known to be expressed in skeletal muscle cells, from somites to the adult. Functional in vitro studies have revealed that RGMa overexpression could promote skeletal muscle cell hypertrophy and hyperplasia, as higher efficiency in cell fusion was observed. Here, we extend the potential role of RGMa during C2C12 cell differentiation in vitro. Our results showed that RGMa administrated as a recombinant protein during late stages of C2C12 myogenic differentiation could induce myoblast cell fusion and the downregulation of different myogenic markers, while its administration at early stages induced the expression of myogenic markers with no detectable morphological effects. We also found that RGMa effects on skeletal muscle hyperplasia are performed via neogenin receptor, possibly as part of a complex with other proteins. Additionally, we observed that RGMa-neogenin is not playing a role as an inhibitor of the BMP signalling in skeletal muscle cells. This work contributes to placing RGMa as a component of the mechanisms that determine skeletal cell fusion via neogenin receptor.


Assuntos
Diferenciação Celular/genética , Proteínas Ligadas por GPI/genética , Hiperplasia/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hiperplasia/patologia , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Transdução de Sinais/genética
13.
Cell Tissue Bank ; 21(3): 479-493, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32385788

RESUMO

Grafting based on both autogenous and allogenous human bone is widely used to replace areas of critical loss to induce bone regeneration. Allogenous bones have the advantage of unlimited availability from tissue banks. However, their integration into the remaining bone is limited because they lack osteoinduction and osteogenic properties. Here, we propose to induce the demineralization of the allografts to improve these properties by exposing the organic components. Allografts fragments were demineralized in 10% EDTA at pH 7.2 solution. The influence of the EDTA-DAB and MAB fragments was evaluated with respect to the adhesion, growth and differentiation of MC3'T3-E1 osteoblasts, primary osteoblasts and dental pulp stem cells (DPSC). Histomorphological analyses showed that EDTA-demineralized fragments (EDTA-DAB) maintained a bone architecture and porosity similar to those of the mineralized (MAB) samples. BMP4, osteopontin, and collagen III were also preserved. All the cell types adhered, grew and colonized both the MAB and EDTA-DAB biomaterials after 7, 14 and 21 days. However, the osteoblastic cell lines showed higher viability indexes when they were cultivated on the EDTA-DAB fragments, while the MAB fragments induced higher DPSC viability. The improved osteoinductive potential of the EDTA-DAB bone was confirmed by alkaline phosphatase activity and calcium deposition analyses. This work provides guidance for the choice of the most appropriate allograft to be used in tissue bioengineering and for the transport of specific cell lineages to the surgical site.


Assuntos
Aloenxertos/efeitos dos fármacos , Técnica de Desmineralização Óssea , Osso e Ossos/fisiologia , Calcificação Fisiológica , Polpa Dentária/citologia , Ácido Edético/farmacologia , Osteoblastos/citologia , Células-Tronco/citologia , Animais , Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Minerais , Osteoblastos/efeitos dos fármacos , Preservação Biológica , Ratos Wistar , Espectrometria por Raios X , Células-Tronco/efeitos dos fármacos
14.
Reprod Biol ; 20(2): 264-272, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32044207

RESUMO

Ovarian tissue cryopreservation is emerging as a promising alternative for fertility preservation of cancer survivors. To date, more than a hundred couples have successfully had babies using this procedure, although it is still considered experimental and demands further investigation. In this work, we evaluated the effects of vitrification, warming and autotransplantation procedures on the morphology and gene expression of murine ovaries. Ovaries were removed from adult female C57BL6 mice (n = 15), vitrified, warmed and autotransplanted (vitrified group), additionally, ovaries were autotransplanted without vitrification (control group, n = 15). After twenty days, grafted ovaries were harvested and used for histological and ultrastructural analysis, germinal vesicle (GV) oocyte collection, RNA sequencing, and Transmission Electron Microscopy (TEM). All classes of follicles and GV were observed in both control and vitrified/warmed transplanted ovaries, and the numbers of primordial, antral and atretic follicles were not different (p > 0.05). Using RNA-seq, we detected 16,602 vs 13,527 expressed genes in vitrified and control ovaries, respectively; and 623 significantly dysregulated genes (fold change >1.5; 332 up-regulated and 291 down-regulated). Cellular membranes, cytoskeletons, and extracellular matrices were found as the main functions of the differentially expressed genes. Moreover, vitrified samples also presented ultrastructural alterations in the cytoskeleton, cell junctions, and endoplasmic reticulum. Taken together, this work showed for the first time that ovarian cells might trigger a compensatory gene regulation mechanism to maintain cellular structure and folliculogenesis progression after vitrification and autotransplantation.


Assuntos
Criopreservação/veterinária , Folículo Ovariano/fisiologia , Ovário/fisiologia , Preservação de Tecido/veterinária , Transcriptoma , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Preservação de Tecido/métodos , Vitrificação
16.
Int. j. morphol ; 37(4): 1229-1233, Dec. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1040117

RESUMO

SUMMARY: Cell culture is an important tool in medical, odontological and biological research laboratories, supporting cell therapies and tissue bioengineering strategies. Gingival fibroblasts present structural function, being able to modulate their metabolic capacity, which is reflected in the tissue morphology. The possibility of culturing fibroblasts in vitro, in monolayer or on three-dimensional scaffolds, for subsequent transplants in vivo opens important perspectives for the periodontal surgical clinic. The objective of the present article is to present a method of obtaining and cultivating viable human gingival fibroblasts for in vitro research. Explants derived from periodontal surgical discards were used, grown in 25 cm2 bottles to obtain a primary cell culture. After observing the proliferation and growth of the fibroblasts that interconnected and formed a monolayer network, involving the periphery of the explants, it was possible to remove the explants, to make the passage and the new subcultures were obtained in a ratio of 1:1. After 7 days, the amount of viable cells was analyzed in triplicate, using the Neubauer chamber technique, in cell culture bottles of 25 mm2 (T25) and 75 mm2 (T75). Fibroblasts were described and subclassified morphologically. The results showed a growth pattern in both bottles, but with a larger number in bottles of 75 cm2. Cells with fibroblastic morphology were subclassified into reticular and fusiform, being predominant those with fusiform morphology. In conclusion, culture of explant of human gingival connective tissue is a viable method for obtaining gingival connective tissue cells suitable for laboratory tests in cell culture, aiming at obtaining constructs for gingival tissue engineering.


RESUMEN: El cultivo celular es una herramienta importante en los laboratorios de investigación médica, odontológica y biológica, que apoyan las terapias celulares y las estrategias de bioingeniería de tejidos. Los fibroblastos gingivales presentan una función estructural, pudiendo modular su capacidad metabólica, que se refleja en la morfología tisular. La posibilidad de cultivar fibroblastos in vitro, en monocapa o en andamios tridimensionales, para trasplantes posteriores in vivo abre perspectivas importantes para la clínica de cirugía periodontal. El objetivo del presente artículo es presentar un método para obtener y cultivar fibroblastos gingivales humanos viables para investigación in vitro. Se utilizaron explantes derivados de los descartes quirúrgicos periodontales, crecidos en frascos de 25 cm2 para obtener un cultivo de células primarias. Después de observar la proliferación y el crecimiento de los fibroblastos que se interconectaron y formaron una red de monocapa, que involucraba la periferia de los explantes, fue posible eliminar los explantes, hacer el pasaje y los nuevos subcultivos se obtuvieron en una proporción de 1:1. Después de 7 días, la cantidad de células viables se analizó por triplicado, utilizando la técnica de cámara de Neubauer, en botellas de cultivo celular de 25 mm2 (T25) y 75 mm2 (T75). Los fibroblastos fueron descritos y sub-clasificados morfológicamente. Los resultados mostraron un patrón de crecimiento en ambas botellas, pero con un número mayor en botellas de 75 cm2. Las células con morfología fibroblástica se subclasificaron en reticulares y fusiformes, predominando aquellas con morfología fusiforme. En conclusión, el cultivo de explante de tejido conectivo gingival humano es un método viable para obtener células de tejido conectivo gingival adecuadas para pruebas de laboratorio en cultivos celulares, con el objetivo de obtener construcciones para la ingeniería del tejido gingival.


Assuntos
Humanos , Células do Tecido Conjuntivo , Técnicas de Cultura de Células/métodos , Bioengenharia/métodos , Gengiva/citologia , Biologia Celular , Fibroblastos
17.
BMC Genomics ; 20(1): 866, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730444

RESUMO

BACKGROUND: The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS: The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS: The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.


Assuntos
Sequenciamento do Exoma/estatística & dados numéricos , Regulação da Expressão Gênica no Desenvolvimento , Gambás/genética , Proteínas/genética , Transcriptoma , Animais , Animais Recém-Nascidos , Brasil , Ontologia Genética , Anotação de Sequência Molecular , Gambás/crescimento & desenvolvimento , Gambás/metabolismo , Proteínas/classificação , Proteínas/metabolismo , Análise de Sequência de RNA
18.
J Bone Miner Metab ; 36(1): 73-86, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28321651

RESUMO

Blocks of Bovine bone have shown promising results as implantable scaffolds to promote bone regeneration. Strontium ranelate (SrR) is both an antiresorptive and an anabolic drug that has been indicated for oral administration to treat osteoporosis. Few studies, however, have investigated the local effects of SrR and its use in association with biomaterials thus far. In this work, we investigated SrR effects in cultures of primary osteoblasts (PO, from Wistar rats calvaria) and immortalized osteoblasts (IO, from MC3T3-E1 cell line) cultivated as a monolayer or in association with scaffolds of bovine bone in mineralized (MBB) and demineralized (DBB) forms. The optimum dose to induce SrR effects on cell viability was established as 0.1 mM. Our results suggested that the local administration of SrR is biocompatible and non-cytotoxic. In addition, SrR appeared to accelerate primary osteoblast cell differentiation by enhancing alkaline phosphatase activity, the expression of osteogenic differentiation markers, the synthesis of the organic matrix, and a decrease of Ca2+ ions in mineralized nodules. DBB was found to be a better scaffold material to promote PO and IO cell proliferation. Exposing the proteins of the demineralized bone matrix might improve scaffold osteoconductive properties. Our results indicated the importance of further investigation of the administration of SrR at sites of bone repair. The association of SrR and bone grafts suggests the possibility of using SrR as a co-adjuvant for bone tissue bioengineering and in bone regeneration therapies.


Assuntos
Osso Esponjoso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Tiofenos/farmacologia , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Íons , Camundongos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ratos Wistar
19.
Acta Histochem ; 119(2): 129-141, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28012573

RESUMO

Odontogenesis is guided by a complex signaling cascade in which several molecules, including FGF2-4, ensure all dental groups development and specificity. Most of the data on odontogenesis derives from rodents, which does not have all dental groups. Didelphis albiventris is an opossum with the closest dentition to humans, and the main odontogenesis stages occur when the newborns are in the pouch. In this study, D. albiventris postnatals were used to characterize the main stages of their molars development; and also to establish FGF2, FGF3 and FGF4 expression pattern. D. albiventris postnatals were processed for histological and indirect immunoperoxidase analysis of the tooth germs. Our results revealed similar dental structures between D. albiventris and mice. However, FGF2, FGF3 and FGF4 expression patterns were observed in a larger number of dental structures, suggesting broader functions for these molecules in this opossum species. The knowledge of the signaling that determinates odontogenesis in an animal model with complete dentition may contribute to the development of therapies for the replacement of lost teeth in humans. This study may also contribute to the implementation of D. albiventris as model for Developmental Biology studies.


Assuntos
Didelphis/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 3 de Crescimento de Fibroblastos/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Dente Molar/crescimento & desenvolvimento , Odontogênese , Sequência de Aminoácidos , Animais , Sequência Conservada , Didelphis/crescimento & desenvolvimento , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/genética , Camundongos , Dente Molar/citologia , Dente Molar/metabolismo
20.
Braz. arch. biol. technol ; 59: e16150613, 2016. graf
Artigo em Inglês | LILACS | ID: biblio-951325

RESUMO

ABSTRACT: Dental pulp stem cells (DPSC) have been showing a considerable potential for regenerative medicine. Pulps were collected from lower incisors (n=2) through direct access of the tooth pulp chamber. The isolated cells were cultured in alfa-MEM 10% FBS, in standard culture conditions. At the third passage, DPSC were characterized by flow cytometry (MHCI, CD54, CD73, CD90, CD45, CD11 and CD34); RT-PCR for Nanog gene; and their differentiation capacity in osteogenic, adipogenic and chondrogenic cell lines. Isolated cells exhibited adhesion capacity to plastic; fusiform morphology, and 80% confluence reached in approximately 3 days. These cells have also revealed positive expression for CD54, CD73 and CD90 markers; and negative expression for CD11, CD34 and CD45. Nanog expression was detected by RT-PCR, expected for a mesenchymal stem cell profile. DPSC chondrogenic differentiation was confirmed by positive staining in Alcian Blue; lipidic droplets stained with oil red confirmed their capacity to differentiate in adipogenic fate; while mineralized beads, stained with alizarin red, confirmed their differentiation in osteogenic phenotype. These results indicate the viability of the isolation and expansion of rat DPSC following this method, and osteogenic differentiation potential opens new perspectives for in vivo studies and the use of these cells in cellular therapies and tissue bioengineering, aiming bone repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA